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Abstract. The representation of the Taylor expansion of the logarithmic-derivative of the
wavefunction by means of 2 Padé approximant, followed by an appropriate quantization
condition, proves a powerful way of obtaining accorate eigenvalues of the Schridinger equation.
In this paper we investigate in detail some of the interesting features of this approach, termed
Riceati-Padé method (RPM), by means of its application to anharmonic oscillators. We analyse
the occurrence of many roots in the neighborhoods of the physical eigenvalues in the weak-
coupling regime, and also obtain accurate coefficients of the strong-coupling expansion. We
finally investigate the global and the local accuracy of the rPM eigenfunctions.

1. Introduction

The Riccati-Padé method (RpM) proves a powerful tool for the calculation of accurate
eigenvalues of the Schrédinger equation for separable problems [1-3]. It comprises the
transformation of the second-order Schrodinger equation into a first-order Riceati differential
equation for the logarithmic derivative of the eigenfunction. The power series expansion of
the latter function is then represented by a Padé approximant and the eigenvalues are given
by a quantization condition coming from the requirement that the approximant yields an
additional coefficient of the Taylor expansion exactly. More precisely, the approximate
eigenvalues are determined by the roots of Hankel-Hadamard determinants, which are
polynomial functions of the energy eigenvalue. The number of roots of the Hankel-
Hadamard determinants grows rapidly with the order of the determinant. Some of these
roots correspond to physical eigenvalues, but others are spurious. One puzzling feature
of the RPM is the concentration of roots in the neighbourhood of the actual eigenvalues.
Remark also that in the general case the RPM does not define an approximation method in
the standard sense of the word, because it does not construct an approximation sequence
for any single eigenvalue.

For certain problems the RPM is useful in order to dctermme tight upper and lower
bounds to the eigenvalues [1-3], Furthermore, the RPM converges so fast that it is possible
to calculate accurate coefficients of the strong coupling expansion for anharmonic oscillators
and other perturbed systems [4]. This is a remarkable property of the RPM because it is weil
known that the accurate calculation of the coefficients of the strong-coupling expansion is
an extremely difficult task {5, 6].
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In addition to ail this, the RPM gives exact results for solvable or quasi-solvable
quantum-mechanical problems because an eigenfunction for any such problem is typically a
polynomial multiplied by the exponential of another polynomial and therefore its logarithmic
derivative is a rational function [7].

The purpose of this paper is a further study of the RPM. In section 2 we summarize the
main equations of the RPM to make the paper self-contained and to introduce the notation
used throughout. In section 3 we obtain the coefficients of the weak-coupling expansion for
anharmonic oscillators and discuss the appearance of an increasing number of roots of the
Hankel-Hadamard determinants close to the selected eigenvalue. We also calculate highly
accurate coefficients of the strong coupling expansion for the same models. In section 4 we
investipgate the form of the RPM eigenfunctions and estimate their giobal and local accuracy.
Finally in section 5 we summarize the most relevant properties of the RPM and indicate
further applications of this method.

2. The Riccati-Padé method

In what follows we specialize in the eigenvalue equation

V= (V) +I0+1)/x* - E)¥ ¢))
which applies to many separable quantum-mechanical problems. If / = 0, 1,... is the
angular momentum quantum number and x 2 0 then equation (1) corresponds to the radial
equation for a central-field model. In this case ¥({x) vanishes as xM! at origin. For 2
one-dimensional model we have I{f + 1) =0 and —o0 < x < oo. In particular if V(x) is
parity invariant then / = —1 and { = 0 give rise to the even and odd solutions, respectively.

The first step in the RPM is the transformation of the Schrédinger equation (1) into a
Riccati equation for the function f(x) defined as

glx) Wix)
x) = - 2
Fx 2 B0 2
where g{x) has been introduced to cancel out knmown singularities of ¥'(x)/W¥(x).

Differentiation of (2) with respect to x and substitution of the Schridinger equation leads
to

' n ' l l+ l
f=pr-2frs& gy ED )
4 g X
The choice g(x) = x/*! removes the last term in (3) and there remains
I+1 -
f’-—"-fz—’z%f-}-E—V. @
For present purposes it suffices to consider a parity invariant potential of the form
K -
Vi)=Y v, )
J=0
defined in terms of a set of coupling constants vg, ..., vg. Obviously vy may be taken zero

without loss of generality. We will consider the domain —c0 < x < oo and vg > 0 to
ensure the existence of bound states.

In this case the solution of the Riccati equation can be expanded in a Taylor series about
the origin

fy=xY_ fix¥ 6
Jj=0
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the coefficients of which can be obtained recursively in terms of the energy according to

1 n—1
fo= —'——[ Jifa—j=1 + Edpo — v, ] )
T3] g e :

This set of equations for n = 0, 1, ..., is a hierarchy of equations for the amplitudes
f» which may be solved sequentially in terms of the (unknown) energy eigenvalue £ and
of the values of the coupling constants defining the potential. For the case vo = 0 the first
equation is simply fo = E. '
The next step is the representation of the Taylor expansion for f(x)/x by means of a
rational function or Padé approximant
M4N X o
[M/NJD = 3 fjx™ 4+ OO+ ®)
je=0
where [M /N 1(x?) is the quotient of a polynom:a] of degree M and a polynomial of degree
N, both in x?
The coefﬁments f; as well as the coefficients which determine the Padé approximant
depend on the energy £ which is so far undetermined. The main assumption of the RPM is
that one obtains a good approximation to the energy if the left-hand side of (8) also yields

the coefficient fys4ny11 exactly. This requirement leads to a quanzization condition of the
form [1-3] ‘

HE(E) =0 D=2,3,.. -d=0,1,... (%)

where H4(E) is the determinant of the matrix with elements fiij+q-1, 47 =1,2,..., D.
The dimension D of the determinant and the displacement 4 which appears in the definition
of the matrix are related to M and Nby M =D+d—-1and N=D -1

For a given value of 4 the roots of HZ form sequences that converge rapidly to the
actual eigenvalues as D increases. It has been proved that the roots of H B(E) and H é (E}
are, respectively, the lower and upper bounds that tightly bracket the eigenvalues of the
Schrédinger equation with V (x) = w?x? + Ax* [3]. For other anharmonic oscillators the
situation is more complicated [3]. The RPM applies to the ground as well as to the excited
states but the accuracy of the approximate eigenvalues decreases with the quantum number
[2.3]. A fascinating and altogether puzzling feature of the RPM is the occurrence of an
increasing number of roots in the neighbourhood of the actual elgenvalue In order to select
a convergent sequence of roots one simply looks for a zero of Hg +1(E) in the neighbourhood
of the chosen zero of H3(E). The determinants of low order have few widely separated
roots and therefore the physical ones can easily be recognized [1-3].

3. Weak-coupling expansion for the anharmonic oscillators

For concreteness we concentrate on the anharmonic oscillators
2

d
H—-—a.?z'-i—x +)LX2K (10)

where A > 0.
Any eigenvalue E(A) of this Hermitian operator can be formally expanded in a Taylor
series about A = 0 leading to what is called the weak-coupling expansion

EW =) EMN (11)

j=0 : : : .-
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where Eg is one of the harmonic oscillator eigenvalues, Eg = 2n+ 1,2 =0,1,.... The
series in the right-hand side of (11) is divergent and the equality means that it is asymptotic
to E(A) [8L.

The calculation of the coefficients E; of the weak-coupling expansion by means of the
RPM is straightforward: one simply expands HZ(E) in a Taylor series about A = 0 and
collects the coefficients. Their roots give the perturbation corrections E; hierarchically for
j=0,1,2,.... Here we have used the computer-algebra language REDUCE to obtain an
analytic expression for H3(E, A).

As examples we show the determinants corresponding to D =2

HO(E,A) = e [(E* — D*(E* - 25) + 162E(E* — 1)A — 189A%]  (12)

4725
andto D=3

0 — T ME2_NN3¢E2 _ae\2rp2
H3(E’“‘46414974375[(E DHE" - 257 (E" - 81)

+6E(E? — D3(E? — 25)(143E2 — 779)A
—9(E? — 1)(403181 E* — 460846 £ — 8575)A2
+4374E (2281 E? — 240D2% — 67512692.%] (13)

corresponding to the quartic oscillator (K = 2 in (10)) and for a displacement d = (.

The roots of A g (£,0) yield Ey for the lowest-lying states. In equations (12} and (13)
we see that Eg = 1 is a double root (D = 2) or a triple root (D = 3). Analogously £q =5
is a simple root (D = 2) or a double root (I = 3), and so on. This pattern of occurrence
of the unperturbed solutions is general and for a given dimension D of the determinant the
ground state appears D times, the first even parity excited state is present D — 1 times,
and so on. The scheme is obviously independent of the parameter K of the anharmonic
perturbation, because we are dealing with the zero-order term (A = 0).

To obtain the perturbative corrections one first substitutes Eg + AE; for £ in the
determinant 3 and obtains E; from the roots of the resulting equation for A == 0. Then one
proceeds exactly in the same way substituting £, -+ AE;, for E; in the function of E; and
A derived in the previous step. The process is equivalent to calculating the weak-coupling
series as Eg + A{E| & AMEz + MEs + ---))) and saves much memory which is one of the
weak poiats of the algebraic manipulation of analytic expressions by means of computer
algebra.

In table 1 we show the resulting weak-coupling expansions corresponding to ail the roots
of the Hankel determinants of dimension 2, 3 and 4, of the quartic anharmonic oscillator
obtained with 4 = 0 by means of the method previously described. We have included
the coefficients of the expansion up to, and including, the first appearance of an incorrect
coefficient. Note that, in addition to the quoted solutions, there also exist other unphysical
roots of negative energy. If the pair (£,A) is a solution of the determinantal equation
HE(E, 1) =0, the pair (—E, (—=1)X*+11) is also a solution of the same equation. This is a
consequence of the transformation of the Hamiltonian under the change x — ix.

Table 1 shows that the multiplicity of a given root E; decreases with j and increases
with D. This fact clearly indicates that one should expect many roots with different degrees
of accuracy in the neighbourhood of a given eigenvalue. These roots become more closely
packed as D increases and/or A decreases. Comparing the results in table ] with independent
calculations of the perturbation corrections leads to the conclusion that repeated coefficients
are always exact. For a sufficiently large order j only two single roots E; are obtained, one
of which may be exact, but there does not seem to be a way of selecting it. The number of
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Table 1. Weak-coupling expansion for the quartic anharmonic oscillator, for displacement d == 0
and for several values of the dimension D of the Hankel determinant.

Eo E) Es Eq Es Es Es Es
D=2
. 3 21 1227
4 16 256
: 21
3
5 -3
D=3
. 3 2 333 _ 30885 3656520
4 16 64 1024 16384
. 3 21 3609 .
4 16 512
-
12
s 33 615 150237
141 o 16 512
P T
D=4
: 3 21 333 " 30885 916731 65518401 21784330359
4 T 8- T 71024 4096 32768 1048576
l 3 21 33 _ 30885 7468983
4 16 64 1024 32768
, 3 2 261
4 16 2048
363
! &
5 3% 615 20079 3576255 1533961719
4 16 64 1024 32768
5 ¥ _65 37131979500
4 16 1024
5 _am
64
9 =329 4801221
4 16 2048
5 47013
406;55
1 - —
3 =

coefficients of the weak-coupling expansion correctly obtained depends on the dimension
of the Hankel determinant D, the value of the displacement and the unperturbed level
considered. In the case of the guartic oscillator, and for d = 0, the leading power of X of a
given determinant is 20 — 2, and this is at most the highest coefficient of the weak-coupling
expansion for the ground state to be obtained comrectly. This fact may be checked by
locking at table 1, and comparing the expansion of the ground state with the weak-coupling
expansion obtained by standard perturbation theory methods. )

This application of the RPM may be regarded as an improvement of the standard
logarithmic perturbation theory [9] for separable problems in the sense that our method
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enables one to treat the ground and excited states simultaneously. The reason for this is
that a Padé approximant explicitly accounts for the nodes of the excited states. On the
other hand, in the standard logarithmic perturbation theory, one introduces the nodes of
the excited states explicitly into the eigenfunction and then expands them in a Taylor series
about A = . The application of the RPM just outlined is particularly useful for the treatment
of the ground state for which it yields more perturbation corrections exactly. To generate a
scheme that favours an excited state with quantum number » > 0 one simply chooses g{x)
in (2) equal to the Hermite polynomial H,(x).

The RPM is not only capable of generating many terms of the perturbative expansion.
It also provides an implicit equation for the energy for all values of the coupling constant,
like those shown in equations (12) and (13). Actually, the expansions quoted in table 1
are not convergent for all values of A, because of the presence of branch points in the
function £ = £()) defined by the equation H4(E, ) = 0. The accurate determination of
the branch points is difficult, due to the high powers of E in in the Hankel determinants,
but they clearly appear in a map of roots for a given dimension D. Figure 1 shows the
map of roots corresponding to the quartic anharmonic oscillator for D = 2, D = 3 and
D = 4. The criterion by which to construct these figures is rather complex and requires
some explanation. The figure shows dots for many pairs (E, A) with [A| < 1, which solve
the comesponding Hankel determinant. For [A| > 1 we instead plot (E/]AY?], 1/4), so
as to fit the region of large values of £ and A into a reasonable scale. This procedure
gives rise to an artificial discontinuity at |A} = 1. The collection of individual pairs (E, X)
finally draws some lines which represent the evolution of a given solution for varying values
of A. Every figure has a centre of symmetry showing the occurrence of the pairs (£, )
and {—E, —X). The region of physical interest is the upper right comer, comresponding
to positive values of the energy and coupling constant. It is very helpful to analyse this
figure concurrently with the weak-coupling expansions of table 1. For example, in the case
D = 2, stemming from the point (£ = 1, A = 0), there are two branches, one with the
correct slope E; = 3/4 and the other with the incorrect value of E; = 21/8. The good
branch is smooth up to A = oo, which means that even at the lowest order we obtain
a root with the proper asymptotic behaviour A/* (the coefficients of the strong-coupling
expansions will be analysed in the next section). The other branch goes upwards and finally
connects with the other unperturbed solution (E = 5, ) = 0). Going to negative values of
A from the point (E = 1, A = 0) there appears a loop (almost impossible to distinguish in
the figure) its tip being another branch point. The condition dA/dE = Q determines all the
square-root-type branch points of E(A).

Once this simple case has been understood, one may try to analyse the vicinity of
(E=1,A=0) for D =4 in figure 1. There are four roots at this point. One of the roots
goes upwards passing through the point (E = 5,4 = (), The weak-coupling expansion
for this root is displayed in the fourth line of the D = 4 block in table 1. The other three
roots go together with increasing values of A, but one of them starts to separate at about
A = 1. This corresponds to the third line of the referred block of table 1. Finally, the
other two remaining roots go up t0 A = ¢o almost indistiguishably from one another, their
relative difference being less than one part in ten thousand. These two roots correspond to
the expansions quoted in the first two lines of the block D = 4 in table 1.

Similar comments may be put forward for the branches emerging from other physical
solutions, like those corresponding the first even-parity excited state related to the
unperturbed solution (E = 5,4 = 0). For D = 3 there is a single branch with the

correct behaviour for large values of A. For D = 4 there are two branches clearly separated
in the figure.
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Figure 1. The map of roots corresponding to the quartic
anharmonic oscillator 1 + Ax* for displacement d = 0
and for dimension of the Hanke! determinant D =2, 3
and 4.

4. Stromg-coapling expansion for the anharmonic osciflators

In addition to the weak-coupling series just discussed the eigenvalues of the anharmonic
oscillator (10) satisfy a strong-coupling expansion of the form [8]

E(l) = )LI,IIK-'I'“ iejl—"Z/(K-l-l).

i=0

(14)

The accurate calculation of the coefficients e; is much more difficult because the exact
eigenfunctions and eigenvalues of the operator —d?/dx2 + x?X are unknown. However, the
strong-coupling expansion for some anharmonic oscillators has been calculated by means of
amatrix method based on the use of the basis set of eigenfunctions of the harmonic oscillator
{31 and more accurately through a properly renormalized perturbation series {6]. The rRPM
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proves to be useful for the calculation of highly accurate coefficients of the strong-coupling
expansion for the anharmonic oscillators and other problems [4].

The accuracy of the strong-coupling coefficients ¢; determined by any of those methads
decreases rapidly with K. For this reason we deem it necessary to compare the coefficients
¢; for the ground state of the anharmonic oscillators with K = 3, 4 and 5 previously obtained
[6] with an accurate calculation by means of the RPM. For the coefficient ey of the quartic
oscillator one may also consider the most accurate value determined up to now [10] by
using a special method of diagonalization with extended precision—up to 200 digits. The
procedure is similar to that for the weak-coupling expansion except that in this case one
considers the potential x>X 4 £x2 and then directly substitutes the strong-coupling series for
E into the Hankel-Hadamard determinants. From the resulting expansion in power series
of the parameter § = A~% &+ ope easily obtains the coefficients ¢;. The details of the
calculation have been given elsewhere [4]; hére we only present results and indicate any
difference with respect to that previous application.

Table 2. Strong-coupling coefficients for the ground state of the anharmonic oscillators with
Vix) = x2 + ax2¥

K=2 K=3 K=4 K=5

e 1060362090484 183 1.14480245379707 122582011382  1.298843702
10-le; 3.62022648788677  3.0792030373296 277118934336 2566473842
10-2e; —3.451 026272321 — 1.854 166431 93219 — 1.263228 42695 — 0.966 539 384
1073¢;  5.19530271091 1550742195768 07504415706  0.45488485
10%s 830834446308  — 1239011743119 — 03859781597 —0.17402306

The accuracy of the computed coefficients decreases with K merely because the
convergence of the method with increasing £ becomes slower. One of the reasons for this
is that the coefficients of f, with n < K do not carry information about x2¥. Therefore,
if we use the same value of the displacement d for all the oscillators the amount of that
information in a Hankel-Hadamard determinant of a given order decreases with K. It seems
preferable to change d accordingly. One can easily study the effect of this parameter on the
velocity of convergence. The choices d = K — 1 or d = K — 2 yield sufficiently accurate
results as shown in table 2; they confirm and considerably improve (particularly for K = 5)
those obtained by means of the renormalized series [6]. The calculation was carried out
by means of REDUCE in floating or rounded mode with a precision of 100 digits and the
accuracy of the coefficients was estimated by comparing the roots of the Hankel-Hadamard
determipants with D = 10 and D = 11, and withd = K — 1 and 4 = K — 2. We may
state loosely that for an increase of one in the dimension of the Hankel determinant we
obtain two more exact digits for the expansion coefficients. To obtain a precision similar to
that reported in [10] we should use matrices of very large dimension which would be very
costly to evaluate in terms of computer time. Note, however, that the RPM also produces
the coefficients of the expansion in fractional powers of the coupling constant, and not just
the leading term as in [10]

5. Eigenfunctions

Previous investigations of the RPM have proved that it produces remarkably accurate
eigenvalues [1-4]. However, nothing has been said about the eigenfunctions except that the
RPM yields exact solutions for solvable or quasi-solvable problems [1, 3, 7]. According to
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(2) the apprc;ximate eigenfunctions are of the form

W(x) =g(x)exp[—f f(r)dt]. (15}

To facilitate the discussion we restrict ourselves to the ground state (g{x) = 1) of
the anharmonic oscillators with potential-energy function V(x)} = x2%, The asymptotic
behaviour of the solution of the Riccati equation f = x* can be exactly reproduced by the
Padé approximant provided that X is odd and d = (K — 1)/2.

To obtain the wavefunction one has to construct the Padé approximant (8) from the
expansion of f(x) and for the desired eigenvalue. Then the approximant is introduced
in (15) and the integration is carried out. To this end the change of variable y = x?
considerably simplifies the algebraic procedure.

The calculation of the expectation value of the Hamiltonian is a good test of the global
quality of the obtained wavefunctions. By numerical integration we have found that (H} is
a better approximation to the energy than the root of the corresponding Hankel-Hadamard
determinant. Furthermore, as D incréases the eigenfunction satisfies the virial theorem
—(d?/dx?) = K (r*¥) with increasing accuracy. Both tests show that the RPM gives good
global approximations to the eigenfunctions. A much more demanding test is the calculation
of H¥ /¥ which reveals the local accuracy of the RPM eigenfunction. For V(x) = 22K we
simply have

L e i . 16)
Again, when using this equation, one has to substitute the Padé form for F(x).

Figure 2 shows this quantity for various values of K and for various values of
the dimension of the Hankel-Hadamard determinant used to compute the approximate
eigenvalue. As shown in figure 2, this quantity is almost constant for K =2, 3, 4andSina
wide interval of values of x. Closer inspection of the values of ¥ reveals that the quantity
defined in (16) deviates appreciably from E only when ¥ is vanishingly small. This fact
proves that the RPM eigenfunctions are suitable for the calculation of accurate expectation
values or matrix elements as indicated above. To give a more precise idea of the flatness of
(16) we mention that £ ¥ (x)/ W (x) deviates from £ ¥(0)/¥(0) by as much as one part in
107 at x = 2 and one part in 10° at x = 3, for D = 6. It also follows from figure 2 that the
interval in which HW¥ /W is relatively constant decreases as X increases, This deterioration
of the eigenfunction is parily counterbalanced, with respect to the calculation of expectation
values, by the fact that its asymptotic hehaviour exp[—|x|£**/(K + 1)] makes ¥ vanish
faster as K increases.

The form of the eigenfunction depends mainly on the roots of the denominator of the
Padé approximant. For example, in the case K = 2 the singular points of the approximants
with d = 0 are simple poles on the imaginary axis and as a result the eigenfunctions are of
the form

D=i )
Vr=ax) = | |1+ pix®)¥ exp(—cx?) (17)
=l
where ¢, p; and g; are positive. Notice that the RPM eigenfunctions do not have the proper
exponential dependence for large values of x for K = 2, as argued above. For K. =3 and
K =5 the RPM eigenfunctions have the appropriate exponential behaviour provided that the
displacement is d = (K — 1)/2. In these cases the poles of the Padé approximants may be
complex and they give rise to terms of the form tan~'(p;x% + g;)} in the exponential part of
the eigenfunction. These unexpected terms are bounded and therefore have no effect on the
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2 2
2 3 4
HY /¥ : HY /¥ j j <&
5
1 - *’/6 L
4 .
X 2\ o« 8
0 ()
0 1 2 3 x 4 0 L 2 3 X 4
2 2
HE /¥ £ | HI/ <0
1 . 1
1] 0 L .
3 x 4 0 H 2 3 < 4

Figure 2. The value of HW(x)/¥{x) computed in the ReM for the potentals x2X, K =2, 3, 4
and 5, corresponding to various values of the dimension D of the Hankel determinant.

exponential behaviour at large values of x. However, they are partly responsible for the high
accuracy of the eigenfunction for small and moderate values of the coordinate. Samples of
RPM eigenfunctions are shown in table 3. For large values of x the Padé approximant to
F(x) behaves asymptotically as ay2x°?*!/by. Therefore for K odd and d = (K —~ 1)/2
this approximant will give the exact asymptotic behaviour of the eigenfunction provided
that ap.y—1/bp—1 is close to unity. In table 4 we show this ratio for K =2 and K =35
and for several values of the order of the determinant D. As expected the RPM gives the
asymptotic behaviour more closely for K = 3 than for K = 5.

Table 3. Unnonnalized low-crder RPM eigenfunctions for some anharmonic oscillators.

Vi) =x* d=0

D=2 Y = (2% + 8,071 ¥ exp(—2.014%)
D=3 ¥ = (x2 +28.42)%081 (2 + 4,53)15 exp(—4.06x%)
Vix)=x8 d=1
D=2 W= (2 4 471208 axp(—0.36x% + 1.74x%)
D=3 ¢ = (x* + 5.68x2 + 13.13)146
xexp[—0.23x% — 0.54x2 — 3.87 tan ™1 (0.44x2 + 1.26)]
Vix) = x10 d=2
D=3 ¥ = (x* + 3.16x% + 9.55)~97

xexpf—0.27x% + 0.52x* + 1.50x% + 3.81 tan~1(0.38x% + 0.59)]
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Table 4. Ratio @pyq_3/bp—; ford = (K — 1}/2 when £ =3 and K =5 in terms of D.

D K=2 K=5
2143

3 09 1.63

4 103 -075

5 099 0.94

6 1002 124
709995 094

8 10001 0.94

9 059997 L2

6. Further comments and conclusion ) -

Throughout this paper we have confirmed that the RPM is suitable for the calculation of
accurate eigenvalues of the Schrédinger equation for separable problems. The method
proves to converge sufficiently fast to provide the strong-coupling expansion which is
extremnely difficult to obtain by other approaches. The RPM also provides a convenient
implementation of the logarithmic perturbation theory to treat excited states.

One of the most important points of this paper is the study of the eigenfunctions. In
general the RPM eigenfunctions are extremely accurate for small and moderate values of
the coordinates which have the greatest effect on the calculation of quantum-mechanical
. properties. Because of their complicated form these eigenfunctions have to be used
in numerical integration algorithms and in many cases they can be easily improved by
the addition of a scaling parameter adjusted according to the variational theorem. For
instance, the change of variables x — ax leads to —(d?/dx?)(a) = —a~2(d?/dx?)(1) and
(2% (@) = a®¥ (x23X)(1), so that one may obtain the parameter o and an improved ansatz
from the varjational theorem without any extra calculation.

A bizarre characteristic of the RPM is the clustering of solutions, ie., the existence of
several close roots of the Hankel determinant for a given value of the coupling constant A.
Clustering is a signal of being close to a physical root, but a decision has to be made as to
which of these roots is the best one. In some specific cases, and for some specific levels,
the ®PM provides upper and lower bounds to the eigenvalues [1-3], but we have not found
a general way of establishing this property. The best way of selecting the physical root
requires the analysis of the corresponding wavefunction, constructed in the way described
in section 5, by counting the number of nodes and/or checking the asymptotic behaviour.
The procedure is costly but sure. In practice, however, it is simpler to follow a sequential
method; for a given level and coupling constant, one determines the approximate eigenvalue
by using the Hankel determinant of smaller dimension D. This root is used as input for a
Newton—Raphson algorithm when solving the next determinant, of dimension D 41, and
SO On.

For simplicity and concreteness we have restricted ourselves to anharmonic oscillators
with polynomial potentials but we deem it worth mentioning that the RPM applies to other
problems as well. For instance, the treatment of many spherically-symmetric potentials is
straightforward [2,4,71. )
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