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Accurate eigenvalues and eigenfunctions for 
quantum-mechanical anharmonic oscillators 

Francisco M Femhdezt and R Guardiola 
Depaslamento de Fisica At6mica y Nuclear. Universidad de Valencia Estudi General; Avda Dr 
Moliner 50,46100-Bujasot Valencia. Spain 

Received 8 March 1993, in final form 9 August 1993 

Abstract. The representation of the Taylor expansion of the logarithmicderivative of the 
wavefunction by means of a P& approximant, followed by an appmpriate quantimion 
condition, proves a powerful way of obtaining accurate eigenvalues of the Schriidinger equation. 
In this paper we investigate in detail some of the interesting features of this approach, termed 
Riccati-Pad6 method (RPM), by means of its application to anharmonic oscillators. We analyse 
the occmnce of many roots i n  the neighborhoods of the physical eigenvalues in the weak- 
coupling regime, and also obtain Furate ccef6cients of the smng-coupling expansion. We 
finally investigate the global and the local accuracy of the RPM eigenfunctions. 

1. Introduction 

The Riccati-Pad6 method (WM) proves a powerful tool for the calculation of accurate 
eigenvalues of the Schrodinger equation for separable problems [l-31. It comprises the 
transformation of the second-order Schrodinger equation into a first-order Riccati differential 
equation for the logarithmic derivative of the eigenfunction. The power series expansion of 
the latter function is then represented by a Pad6 approximant and the eigenvalues are given 
by a quantization condition coming from !he requirement that the approximant yields an 
additional coefficient of the Taylor expansion exactly. More precisely, the approximate 
eigenvalues are determined by the roots of Hankel-Hadamard determinants, which are 
polynomial functions of the energy eigenvalue. The number of roots of the Hankel- 
Hadamard determinants grows rapidly with the order of the determinant. Some of these 
roots correspond to physical eigenvalues, but others are spurious. One puzzling feature 
of the WM is the concentration of roots in the neighbourhood of the actual eigenvalues. 
Remark also that in the general case the WM does not define an approximation method in 
the standard sense of the word, because it does not construct an approximation sequence 
for any single eigenvalue. 

For certain problems the WM is useful in order to determine tight upper and lower 
bounds to the eigenvalues t1-31. Furthermore, the RPM converges so fast that it is possible 
to calculate accurate coefficients of the strong coupling expansion for anharmonic oscillators 
and other perturbed systems [4]. This is a remarkable property of the wM because it is well 
known that the accurate calculation of the coefficients of the strong-coupling expansion is 
an extremely difficult task [5,6].  
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In addition to all this, the RPM gives exact results for solvable or quasi-solvable 
quantum-mechanical problems because an eigenfunction for any such problem is typically a 
polynomial multiplied by the exponential of another polynomial and therefore its logarithmic 
derivative is a rational function [7]. 

The purpose of this paper is a further study of the RPM. In section 2 we summarize the 
main equations of the RPM to make the paper self-contained and to introduce the notation 
used throughout. In section 3 we obtain the coefficients of the weak-coupling expansion for 
anharmonic oscillators and discuss the appearance of an increasing number of roots of the 
Hankel-Hadamard determinants close to the selected eigenvalue. We also calculate highly 
accurate coefficients of the strong coupling expansion for the same models. In section 4 we 
investigate the form of the WM eigenfunctions and estimate their global and local accuracy. 
Finally in section 5 we summarize the most relevant properties of the RPM and indicate 
further applications of this method. 

2. The Riccati-Pad6 method 

In what follows we specialize in the eigenvalue equation 
Y” = ( V ( X )  + 1 ( 1 +  l ) / x Z  - E )  Y 

which applies to many separable quantum-mechanical problems. If 1 = 0, 1, . . . is the 
angular momentum quantum number and x 2 0 then equation ( I )  corresponds to the radial 
equation for a central-field model. In this case Y(x) vanishes as XI+’ at origin. For a 
one-dimensional model we have 1(l+ 1) = 0 and -CO c x c CO. In particular if V ( r )  is 
parity invariant then 1 = -1 and 1 = 0 give rise to the even and odd solutions, respectively. 

The first step in the RPM is the transformation of the Schrodinger equation (1) into a 
Riccati equation for the function f ( x )  defined as 

where g ( x )  has been introduced to cancel out known singularities of Y’(x)/Y(x). 
Differentiation of (2) with respect to x and substitution of the Schrildinger equation leads 
to 

, 2 g’ 6” I ( 1 f  1) f f - 2 - f + - + E - - - - ,  g 6 X 2  (3) 

The choice g ( x )  = x‘+’ removes the last term in (3) and there remains 

f + E ~ -  V .  (4) 
f ‘ = ~ f 2 - 2 -  1 + 1  

X 

For present purposes it suffices to consider a parity invariant potential of the form 
Y ,. 

V ( x )  = C V j X ” .  
j=O 

(5) 

defined in terms of a set of coupling constants V O ,  . . . , V K .  Obviously vo may be taken zero 
without loss of generality. We will consider the domain -CO < x < CO and VK > 0 to 
ensure the existence of bound states. 

In this case the solution of the Riccati equation can be expanded in a Taylor series about 
the origin 
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the coefficients of which can be obtained recursively in terms of the energy according to 

This set of equations for n = 0,1,. . ., is a hierarchy of equations for the amplitudes 
fn which may be solved sequentially in terms of the (unknown) energy eigenvalue E and 
of the values of the coupling constants defining the potential. For the case vo = 0 the first 
equation is simply fo = E. 

The next step is the representation of the Taylor expansion for f (x) /n  by means of a 
rational function or Pad6 approximant 

.I . 
M+N 

[ M / N ] ( X Z )  = fjX2' + O(X*'M+"+2) (8) 

where [M/N](x*) is the quotient of a polynomial of degree M and a polynomial of degree 
N ,  both in x2. 

as well as the coefficients which determine the Pad6 approximant 
depend on the energy E which is so far undetermined. The main &sumption of the FS'M is 
that one obtains a good approximation to the energy if the left-hand side of (8) also yields 
the coefficient fM+N+1 exactly. This requirement leads to a quantization condition of the 
form [ 1-31 

j=O 

The coefficients 

H g ( E )  = 0 D =.2,3,. . . d = 0,1, . . . (9) 
where H $ ( E )  is the determinant of the matrix with elements f i + j + d - l .  i, j = 1,2,. . . , D. 
The dimension D of the determinant and the displacement d which appears in the definition 
of the matrix are related to M and N by M = D + d  - 1 and N = D - 1. 

For a given value of d the roots of Hg form sequences that converge rapidly to the 
actual eigenvalues as D increases. It has been proved that the roots of H j ( E )  and H h ( E )  
are, respectively, the lower and upper bounds that tightly bracket the eigenvalues of the 
Schrodinger equation with V ( x )  = w2x2 + Ax4 [3]. For other anharmonic oscillators the 
situation is more complicated [3]. The RPM applies to the ground as well as to the excited 
states but the accuracy of the approximate eigenvalues decreases with the quantum number 
[2,3]. A fascinating and altogether puzzling feature of the RPM is the occurrence of an 
increasing number of roots in the neighbourhood of the actual eigenvalue. In order to select 
a convergent sequence of roots one simply looks for a zero of H$+,(E) in the neighbourhood 
of the chosen zero of v g ( E ) .  The determinants of low order have few widely separated 
roots and therefore the physical ones can easily be recognized 11-31. 

3. Weak-coupling expansion for the anharmonic oscillators 

For concreteness we concentrate on the anharmonic oscillators 

where A z 0. 

series about A = 0 leading to what is called the weak-coupling expansion 
Any eigenvalue E(A) of this Hermitian operator can be formally expanded in a Taylor 

m 
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where Eo is one of the harmonic oscillator eigenvalues, Eo = 2n + 1, n = 0, 1, . . .. The 
series in the right-hand side of (1 I )  is divergent and the equality means that it is asymptotic 
to E(?..) 181. 

The calculation of the coefficients Ej of the weak-coupling expansion by means of the 
RPM is straightforward one simply expands H$(E)  in a Taylor series about A = 0 and 
collects the coefficients. Their roots give the perturbation corrections Ej hierarchically for 
j = 0 , 1 , 2 , .  . .. Here we have used the computer-algebra language REDUCE to obtain an 
analytic expression for H g ( E ,  A). 

F M Ferndndez and R Guardiola 

As examples we show the determinants corresponding to D = 2 
1 

4725 
H;(E,  A) = -[(EZ - 1)’(E2 - 25) + 162E(E2 - 1)A - 189A2] (12) 

a n d t o D = 3  

[ ( E z  - 0 3 ( E 2  -U)’(E’ - 81) 
1 

46414974375 
@ ( E ,  A) = 

+ 6 E ( E 2  - 1)’(E2 - 25)(143E2 -779)A 
-9(E2 - 1)(403181E4 - 460846E’- 8575)A’ 
+4374E(2281Ez - 2401)A3 - 6751269A4] (13) 

corresponding to the quartic oscillator (K = 2 in (IO)) and for a displacement d = 0. 
The roots of H$(E, 0) yield EO for the lowest-lying states. In equations (12) and (13) 

we see that Eo = 1 is a double root (D = 2) or a triple root (D = 3). Analogously Eo = 5 
is a simple root (D = 2) or a double root (D = 3), and so on. This pattern of occurrence 
of the unperturbed solutions is general and for a given dimension D of the determinant the 
ground state appears D times, the first even parity excited state is present D - I times, 
and so on. The scheme is obviously independent of the parameter K of the anharmonic 
perturbation, because we are dealing with the zero-order term (A = 0). 

To obtain the perturbative corrections one first substitutes Eo + A E I  for E in the 
determinant Hg and obtains El from the roots of the resulting equation for A = 0. Then one 
proceeds exactly in the same way substituting E j  + AEj+, for E j  in the function of Ej and 
A derived in the previous step. The process is equivalent to calculating the weak-coupling 
series as Eo + h(El + A(E2 + A(E3 + . . .))) and saves much memory which is one of the 
weak points of the algebraic manipulation of analytic expressions by means of computer 
algebra 

In table 1 we show the resulting weak-coupling expansions corresponding to all the roots 
of the Hankel determinants of dimension 2, 3 and 4, of the quartic anharmonic oscillator 
obtained with d = 0 by means of the method previously described. We have included 
the coefficients of the expansion up to, and including, the first appearance of an incorrect 
coefficient. Note that, in addition to the quoted solutions, there also exist other unphysical 
roots of negative energy. If the pair ( E ,  A) is a solution of the determinantal equation 
Hg(E, A) = 0, the pair (-E, (-I)K+’A) is also a solution of the same equation. This is a 
consequence of the transformation of the Hamiltonian under the change x --t in. 

Table I shows that the multiplicity of a given root Ej decreases with j and increases 
with D. This fact clearly indicates that one should expect many mots with different degrees 
of accuracy in the neighbourhood of a given eigenvalue. These roots become more closely 
packed as D increases and/or A decreases. Comparing the results in table I with independent 
calculations of the perturbation corrections leads to the conclusion that repeated coefficients 
are always exact. For a sufficiently large order j only two single roots Ej are obtained, one 
of which may be exact, but there does not seem to be a way of selecting it. The number of 
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Table 1. Weak-coupling expansion for the quaRic anbmonic oscillator, for displacement d = 0 
and for several values of the dimension D of the Hankel deeminant. 

Eo El E2 E3 E4 Es E6 Es 

D = 2  

i 7  
5 - -  

8 

D = 3  
3 . 2 1 .  
4 16 

1 

21 3 
4 16 

1 
81 1 -- 
32 
39 615 
4 16 

5 

1101 
5~ ~ 16 

2481 9 -- 
32 

- - _  
-- - 

- -- 
- 

D = 4  

1 

I 

I 

1 

5 

5 

5 

9 

9 

13 

3 21 
4 16 
3 21 
4 16 

21 3 
4 16 
363 
64 
39 615 
4 16 
39 615 
4 16 
9771 
64 

123 3249 
4 16 

47013 
64 

40965 

- 
- 

-- - 
- 

-- 
- _ _  

-- 
- -- 

- 
-- 

64 

1227 
256 
- 

3088s 3656529 _- - - 333 
~ 6 4  1024 16384 
3609 
512 
- 

150237 
512 
- 

65518,+01 21784330359 -- . 30885 916731 _-  - 333 
64 1024 4096 32768 1 048 516 
333 
64 1024 32 768 
26 1 

- 
30885 7468983 -- - - 

- 
2048 

3576255 1533961719 - -- 20079~ , 

37 131-979500 
1024 

64 1024 32 768 

4801221. 
2048 
- 

coefficients of the weak-coupling expansion correctly obtained depends on the dimension 
of the Hankel determinant D, the value of the displacement and the unperturbed level 
considered. In the case of the quartic oscillator, and for d = 0, the leading power of A of a 
given determinant is 2D-2, and this is at most the highest coefficient of the weak-coupling 
expansion for the ground state to be obtained correctly. This fact may be checked by 
looking at table 1, and comparing the expansion of the ground state with the weak-coupling 
expansion obtained by standard perturbation theory methods. 

This application of the RPM may be regarded as an improvement of the standard 
logarithmic perturbation theory [9] for separable problems in the sense that our method 
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enables one to treat the ground and excited states simultaneously. The reason for this is 
that a Pad6 approximant explicitly accounts for the nodes of the excited states. On the 
other hand, in the standard logarithmic perturbation theory, one introduces the nodes of 
the excited states explicitly into the eigenfunction and then expands them in a Taylor series 
about A = 0. The application of the RPM just outlined is particularly useful for the treatment 
of the ground state for which it yields more perturbation corrections exactly. To generate a 
scheme that favours an excited state with quantum number n > 0 one simply chooses g ( x )  
in (2) equal to the Hermite polynomial Hn (x) .  

The RPM is not only capable of generating many terms of the perturbative expansion. 
It also provides an implicit equation for the energy for all values of the coupling constant, 
like those shown in equations (12) and (13). Actually, the expansions quoted in table 1 
are not convergent for all values of A, because of the presence of branch points in the 
function E = EO.) defined by the equation Hg(E,h) = 0. The accurate determination of 
the branch points is difficult, due to the high powers of E in in the Hankel determinants, 
but they clearly appear in a map ofroofs for a given dimension D. Figure 1 shows the 
map of roots corresponding to the quartic anharmonic oscillator for D = 2, D = 3 and 
D = 4. The criterion by which to construct these figures is rather complex and requires 
some explanation. The figure shows dots for many pairs ( E ,  h) with [hi < I ,  which solve 
the corresponding Hankel determinant For [A[ > 1 we instead plot (E/~hi131, I/Q, so 
as to fit the region of large values of E and A into a reasonable scale. This procedure 
gives rise to an artificial discontinuity at lhl = 1. The collection of individual pairs (E, A) 
finally draws some lines which represent the evolution of a given solution for varying values 
of A. Every figure has a centre of symmetry showing the occurrence of the pairs (E,h) 
and (-E, 4). The region of physical interest is the upper right comer, corresponding 
to positive values of the energy and coupling constant It is very helpful to analyse this 
figure concurrently with the weak-coupling expansions of table 1. For example, in the case 
D = 2, stemming from the point (E = 1, h = 0), there are two branches, one with the 
correct slope E, = 3/4 and the other with the incorrect value of El = 21/8. The good 
branch is smooth up to h = 00, which means that even at the lowest order we obtain 
a root with the proper asymptotic behaviour Ail3 (the coefficients of the strong-coupling 
expansions will be analysed in the next section). The other branch goes upwards and finally 
connects with the other unperturbed solution (E = 5, h = 0). Going to negative values of 
h from the point (E = 1,  h = 0) there appears a loop (almost impossible to distinguish in 
the figure) its tip being another branch point. The condition dh/dE = 0 determines all the 
square-root-type branch points of E@). 

Once this simple case has been understood, one may try to analyse the vicinity of 
(E = 1. A = 0) for D = 4 in figure 1. There are four roots at this point One of the roots 
goes upwards passing through the point ( E  = 5 , h  = 0). The weak-coupling expansion 
for this root is displayed in the fourth line of the D = 4 block in table 1. The other three 
roots go together with increasing values of A, but one of them starts to separate at about 
h = I .  This corresponds to the third line of the referred block of table 1. Finally, the 
other two remaining mots go up to h = cc ahnost indistiguishably from one another, their 
relative difference being less than one part in ten thousand. These two roots correspond to 
the expansions quoted in the first two lines of the block D = 4 in table 1. 

Similar comments may be put forward for the branches emerging from other physical 
solutions, like those corresponding the first even-parity excited state related to the 
unperturbed solution ( E  = 5,h = 0). For D = 3 there is a single branch with the 
correct behaviour for large values of h. For D = 4 there are two branches clearly separated 
in the figure. 

F M Fernrindez and R Guardiola 
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7175 

4. Strong-coupling expansion for the anharmonic oscillators 

In addition to the weak-coupling series just discussed the eigenvalues of @e anharmonic 
oscillator (IO) satisfy a strong-coupling expansion of the form [8] 

The accurate calculation of the coefficients ej is much more difficult because the exact 
eigenfunctions and eigenvalues of the operator -d2/dr2 + x Z K  are unknown. However, the 
strong-coupling expansion for some anharmonic oscillators has been calculated by means of 
a matrix method based on the use of the basis set of eigenfunctions of the harmonic oscillator 
[51 and more accurately through a properly renonnalized perturbation series 161. The RPM 
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proves to be useful for the calculation of highly accurate coefficients of the strong-coupling 
expansion for the anharmonic oscillators and other problems [4]. 

The accuracy of the strong-coupling coefficients ej determined by any of those methods 
decreases rapidly with K. For this reason we deem it necessary to compare the coefficients 
ej for the ground state of the anharmonic oscillators with K = 3.4 and 5 previously obtained 
[61 with an accurate calculation by means of the RPM. For the coefficient eo of the quartic 
oscillator one may also consider the most accurate value determined up to now [lo] by 
using a special method of diagonalization with extended precision-up to 200 digits. The 
procedure is similar to that for the weak-coupling expansion except that in this case one 
considers the potential x Z K  +Ex2 and then directly substitutes the strong-coupling series for 
E into the Hankel-Hadamard determinants. From the resulting expansion in power series 
of the parameter = k-2/(K+1) one easily obtains the coefficients ej. The details of the 
calculation have been given elsewhere [4]; here we only present results and indicate any 
difference with respect to that previous application. 

F M Fernhndez and R Guardiola 

Table 2. Strongcoupling coefficients for the ground slate of the anharmonic oscillalors with 

K = 2  K = 3  K = 4  K = 5  

V ( X )  = xz + Ax2K 

eo 1.060 362090484 I83 1.1448 024537 9707 1.225 820 1 I3 82 1.298 843 702 
lO-'el 3.62022648788677 3.0792030373296 2.771 18934336 2566473842 
10-'e2 -3.451026272321 - 1.85416643193219 - 1.26322842695 -0,966539384 
10-)e, 5.19530271091 1.559742 195768 0.750441 5706 0.45488485 
10-4e4 8.30834446308 - 1.239011743119 -0.3859781597 -0.17402306 

The accuracy of the computed coefficients decreases with K merely because the 
convergence of the method with increasing D becomes slouer. One of the reasons for this 
is that the coefficients of f. with n < K do not carry information about x ~ ~ .  Therefore, 
if we use the same value of the displacement d for all the oscillators the amount of that 
information in a Hankel-Hadamard determinant of a given order decreases with K .  It seems 
preferable to change d accordingly. One can easily srudy the effect of this parameter on the 
velocity of conbergence. The choices d = K - 1 or d = K - 2 yield sufficiently accurate 
results as shown in table 2; they confirm and considerably improve (particularly for K = 5 )  
those obtained by means of the renormalized series [6]. The calculation was carried out 
by means of REDUCE in floating or rounded mode with a precision of 100 digits and the 
accuracy of the coefficients was estimated by comparing the roots of the Hankel-Hadamard 
detcrminants wilh D = IO and D = 11. and with d = K - I and d = K - 2. We may 
state loosely that for an increase of one in the dimension of the Hankel determinant we 
obtain two more exact digits for the expansion coefficients. To obtain a precision similar to 
that reponed in [ I O ]  we should use matrices of very large dimension which would be very 
costly to evaluate in terms of computer time. Note, however, that the RPhl also produces 
the coefficients of the expansion in fractional pou'ers of the coupling constant, and not just 
the leading term as in [ I O ]  

5. Eigenfunctions 

Previous investigations of the RPM have proved that it produces remarkably accurate 
eigenvalues [1-4]. However, nothing has been said about the eigenfunctions except that the 
RPM yields exact solutions for solvable or quasi-solvable problems [ I ,  3, 71. According to 
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(2) the approximate eigenfunctions are of the form 

~ x )  = g ~ e x p [  -rf(f)&]. (15) 

To facilitate the discussion we restrict ourselves to the ground state ( g ( x )  = 1)  of 
the anharmonic oscillators with potential-energy function V ( x )  = x Z K .  The asymptotic 
behaviour of the solution of the Riccati equation f = x K  can be exactly reproduced by the 
Pad6 approximant provided that K is odd and d = (K - l)/2. 

To obtain the wavefunction one has to construct the Pad6 approximant (8) from the 
expansion of f(x) and for the desired eigenvalue. Then the approximant is introduced 
in (15) and the integration is carried out. To this end the change of variable y = x2 
considerably simplifies the algebraic procedure. 

The calculation of the expectation value of the Hamiltonian is a good test of the global 
quality of the obtained wavefunctions. By numerical integration we have found that (H) is 
a better approximation to the energy @an the root of the corresponding Hankel-Hadamard 
determinant. Furthermore, as D increases the eigenfunction satisfies the virial theorem 
-(d2/dxz) = K ( r Z K )  with increasing accuracy. Both tests show that the RPM gives good 
global approximations to the eigenfunctions. A much more demanding test is the calculation 
of H Y / q  which reveals the local accuracy of the RPM eigenfunction. For V ( x )  = x Z K  we 
simply have 

Again, when using this equation, one has to substitute the Pad6 form for f(x). 
Figure 2 shows this quantity for various values of K and for various values of 

the dimension of the Hankel-Hadamard determinant used to compute the approximate 
eigenvalue. As shown in figure 2, this quantity is almost consknt for K =2,3 ,4  and 5 in a 
wide interval of values of x .  Closer inspection of the values of Y reveals that the quantity 
defined in (16) deviates appreciably from E only when Y is vanishingly small. This fact 
proves that the RPM eigenfunctions are suitable for the calculation of accurate expectation 
values or matrix elements as indicated above. To give a more precise idea of theflatness of 
(16) we mention that.HY(x)/Q(x) deviates from HY(O)/Y(O) by as much as one part in 
lo7 at x = 2 and one part in 105 at x = 3, for D = 6. It also follows from figure 2 that the 
interval in which HY/Y is relatively constant decreases as K increases. This deterioration 
of the eigenfunction is partly counterbalanced, with respect to the calculation of expectation 
values, by the fact that its asymptotic behaviour exp[-lx(K+'/(K + I)] makes Y vanish 
faster as K increases. 

The fonn of the eigenfunction depends mainly on the roots of the denominator of the 
Pad6 approximant. For example, in the case K = 2 the singular points of the approximants 
with d = 0 are simple poles on the imaginary axis and as a result the eigenfunctions are of 
the form 

where c. pi and qj are positive. Notice that the RPM eigenfunctions do not have the proper 
exponential dependence for large values of x for K = 2, as argued above. For K = 3 and 
K = 5 the RPM eigenfunctions have the appropriate exponential behaviour provided that the 
displacement is d = ( K  - 1)/2. In these cases the poles of the Pad6 approximants may be 
complex and they give rise to terms of the form tan-' (pjx' + qj) in the exponential part of 
the eigenfunction. These unexpected terms are bounded and therefore have no effect on the 
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0 
0 1 2 3 x 4  

Figure 2. The value of H'P(x) /q(x)  computed in the RPM for the potentials x Z K ,  K = 2 . 3 , 4  
and 5. corresponding to various values of the dimension D of the Hankel determinant. 

exponential behaviour at large values of x.  However, they are partly responsible for the high 
accuracy of the eigenfunction for small and moderate values of the coordinate. Samples of 
RPM eigenfunctions are shown in table 3. For large values of x the Pad6 approximant to 
f ( x )  behaves asymptotically as aN+,jxZd+l/bN. Therefore for K odd and d = (K - l)/2 
this approximant will give the exact asymptotic behaviour of the eigenfunction provided 
that aDe-l/bD-I is close to unity. In table 4 we show this ratio for K = 2 and K = 5 
and for several values of the order of the determinant D. As expected the RPM gives the 
asymptotic behaviour more closely for K = 3 than for K = 5. 

Table 3. Unnormalized low-order RPM eienfunctions for some anharmonic oscillalors. 
~~~ 

V(x)=x4 d = O  
D = 2  
D = 3  

V ( x )  =x6 d = 1 
D = 2  
D = 3  

q = (x2 + 8.07)".98exp(-2.01~2) * = (xz +28.42)90"'(xz +4.53)'~54exp(-4.06x2) 

* = (x' +4.71)-2'.8Lexp(-0.36x4 + 1.74~') * = (x' f5 .68~ '  + 13.13)'.46 
xexp[-0.23x4 - 0.54~' -3.87m-'(0.44x2 + 1.26)I 

V ( x )  =.do d = 2  
D = 3  * = (x4 + 3 . 1 6 ~ ~  + 9.55)-'") 

xexp[-0.27~~ + 0.52~' + 1 . 5 0 ~ ~  + 3.81 tan-'(0.38x2 + 0.59)l 
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Table 4. Ratio aD+d-,/bD-, ford = (K - 1)/2 when K = 3 and K = 5 in terms of D. 

D K = 2  K = 5  

2 1.43 
3 0.91 1.63 
4 1.03 -0.75 
5 0.99 0.94 
6 1.002 1.24 
7 0.9995 0.94 
S 1.OW1 0.94 
9 0.99997 l.M 

6. Further comments and conclusion 

Throughout this paper we have confirmed that the w M  is suitable for the calculation of 
accurate eigenvalues of the Schrtidinger equation for separable problems. The method 
proves to converge sufficiently fast to provide the strong-coupling expansion which is 
extremely difficult to obtain by other approaches. The RPM also provides a convenient 
implementation of the logarithmic perturbation theory to treat excited states. 

One of the most important points of this paper is the study of the eigenfunctions. In 
general the RPM eigenfunctions are extremely accurate for small and moderate values of 
the coordinates which have the greatest effect on the calculation of quantum-mechanical 
properties. Because of their complicated form these eigenfunctions have to be used 
in numerical integration algorithms and in many cases they can be easily'improved by 
the addition of a scaling parameter adjusted according to the variational theorem. For 
instance, the change of variables x + a x  leads to -(d2/dx2)(or) = -a-2(dZ/dxZ)(1) and 
(xZK)(o l )  = c y Z K ( x Z K ) ( l ) ,  so that one may obtain the parameter a and an improved ansatz 
from the variational theorem without any extra calculation. 

A bizarre characteristic of the RPM is the clustering of solutions, i.e., the existence of 
several close roots of the Hankel determinant for a given value of the coupling constant A. 
Clustering is a signal of being close to a physical root, but a decision has to be made as to 
which of these roots is the best one. In some specific cases, and for some specific levels, 
the RPM provides upper and lower bounds to the eigenvalues [I-31, but we have not found 
a general way of establishing this property. The best way of selecting the physical root 
requires the analysis of the corresponding wavefunction, constiucted in the way described 
in section 5, by counting the number of nodes and/or checking the asymptotic behaviour. 
The procedure is costly but sure. In practice, however, it is simpler to follow a sequential 
method; for a given level and coupling constant, one determines the approximate eigenvalue 
by using the Hankel determinant of smaller dimension D. This root is used as input for a 
Newton-Raphson algorithm when solving the next determinant, of dimension D 5 1, and 
so on. 

For simplicity &d concreteness we have restricted ourselves to anharmonic oscillators 
with polynomial potentials but we deem it worth mentioning that the RPM applies to other 
problems as well. For instance, the treatment of many spherically-symmetric potentials is 
straightforward [Z, 4,71. 
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